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a b s t r a c t

In this paper an initial boundary value problem for a linear equation describing an

axially moving stretched beam will be considered. The velocity of the beam is assumed

to be time varying. Since the order of magnitude of the bending stiffness terms depends

on the vibration modes and the frequencies involved a combination of two simplified

equation for the higher frequencies) will be used to describe the transversal vibrations

of the system accurately. Based on the calculations of the natural frequencies the regions

of applicability of these sub-models will be determined. A two time-scales perturbation

method will be used to construct formal asymptotic approximations of the solutions.

Non-resonant and some resonant cases will be studied for four different values of the

relative errors. An important implication of the earlier results in the literature is that for

these types of axially moving continua problems the use of only string-like models is

not appropriate. To describe the dynamics of these types of axially moving continua

problems correctly one has to include (small) bending stiffness in the model. In this

paper it is explicitly shown how to work with a combined model that is a string model

at the low frequencies and a tensioned beam model at the higher frequencies.

& 2009 Published by Elsevier Ltd.
1. Introduction

Axially moving systems are present in a vast class of engineering problems which arise in industrial, civil, aerospatial,
mechanical, electronic, medical, and automotive applications. Serpentine belts, aerial cables, tram and train ways, oil
pipelines, magnetic tapes, power transmission belts, band saw blades, chair lifts in skiing resorts, and even models of
human DNA are examples of real objects where axial transport of mass can be associated with transverse vibrations.
Investigating transverse vibrations of a belt system is a challenging subject which has been studied for many years by many
researches and still is of interest today (see the references for a recent overview). In the classical analysis of axially moving
continua the vibrations are usually classified into two types, i.e. whether it is of a string-like type or of a beam-like type,
depending on the bending stiffness of the belt. If the bending stiffness can be neglected then the system is classified as
string (wave)-like, otherwise it is classified as beam-like. The transverse vibrations of a belt system (with time-varying
velocity VðTÞ) can be modeled mathematically as:
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�
 string-like by

UTT þ 2VUXT þ VT UX þ ðV
2 � c2ÞUXX ¼ 0 (1)

and

�
 beam-like (with a string effect) by

UTT þ 2VUXT þ VT UX þ ðV
2 � c2ÞUXX þ

EI

rA
UXXXX ¼ 0, (2)

where A is the area of the cross-section of the belt, X the coordinate in horizontal direction, UðX; TÞ the displacement of the
string in vertical direction, pL the distance between the pulleys, r the mass density of the belt, E the modulus of elasticity,
I the moment of inertia with respect to the x (horizontal)-axis, T the time, VðTÞ the time-varying belt speed, and c the wave
speed and where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=rA

p
, in which T0 is assumed to be the constant tension of the belt. The time-varying belt velocity

VðTÞ is given by VðTÞ ¼ �ðV0 þ a sinðoTÞÞ, where V0, o, and a are some positive constants with V040 and V04jaj, and
where � is a small parameter with 0o�51. The term �a sinðoTÞcan be seen as a small perturbation of the main belt speed
�V0, due to different kinds of imperfections of the belt system. The small parameter � indicates that the belt speed VðTÞ is
small compared to the wave speed c. The condition V04jaj guarantees that the belt always moves forward in one direction.

Due to different kinds of imperfections of the belt system such as roll eccentricities and varying belt speed, severe
transversal vibrations (due to internal resonances) can occur. The occurrence of resonances should be prevented since they
can cause operational and maintenance problems including excessive wear of the belt and the support components, and an
increase of energy consumption of the belt system. By knowing the natural frequencies of the belt, the so-called resonance-
free belt system can be designed. Although the nonlinear models can be more informative, and describe the real conveyer
belt systems usually better, it is not meaningless to investigate the linear equations (1) and (2) first.

Eq. (1) with VðTÞ ¼ �ðV0 þ a sinðoTÞÞ was studied in Ref. [1]. It was found that there are infinitely many values of o
giving rise to internal resonances in the belt system. It was also shown that the truncation method cannot be applied in
order to obtain asymptotic results on long time-scales (that is, on time-scales of order ��1). Eq. (1) with VðTÞ ¼

V0 þ �a sinðoTÞwas studied in Ref. [2]. It was shown that in this case for a high velocity the truncation method also cannot
be applied. On the other hand, it was also shown in Ref. [3] that for the beam equation (2) the truncation method can be
applied, but the dynamic behavior of the belt system is still very complicated. The stability conditions for the belt system
were also derived in Ref. [3]. From experiments and from the theoretical investigations (see, for example, Ref. [4]) it is
known that the real dynamic behavior of conveyer belt systems with relatively small bending stiffness is some sort of
combination of both models (1)–(2). The low frequency vibration modes look more like string modes and the higher order
modes (when the bending stiffness becomes more important) look more like beam modes. It is not only interesting but also
important from the applicational point ofview to investigate such phenomena of transients ‘‘from string to beam’’ behavior.
In Ref. [4] the effect of bending stiffness on higher order modes was discussed. In recent papers [5–7] the following
attempts to describe these phenomena can be found. When the belt speed is high and has the same order of magnitude as
the wave speed c (that is, VðTÞ ¼ V0 þ �a sinðoTÞ) a case has been studied in Ref. [5] for which the bending stiffness is of
order �, and an approximate analytical expression for the natural frequency and stability regions has been presented. In
Ref. [6] the same assumptions have been used and boundary layer solutions have been constructed. Approximations of the
eigenvalues of the belt system with a small bending stiffness were also presented in Ref. [7]. All the authors of the
aforementioned papers found that the natural frequencies change due to the presence of a small bending stiffness, but did
not include the fact that for the higher order modes the bending stiffness terms are not of order � anymore, and actually
should be included in the Oð1Þ-problem. Namely, the assumption that most axially moving belt systems have small bending
stiffness relative to their tension and can be modeled as an axially moving beam with small dimensionless bending
stiffness (as it was done in Ref. [7]) is only valid for lower order vibration modes. Moreover, the natural frequencies of the
beam model (2) with VðTÞ ¼ V0 þ �a sinðoTÞ cannot be found exactly (see for instance Refs. [10,11]). In this paper it will be
assumed thatVðtÞ ¼ �ðV0 þ a sinðoTÞÞ. The idea how and when in this case different simplified models may be applied to
construct a more realistic model of the traveling belt system was proposed in Ref. [12]. Usually it is not possible to calculate
the natural frequencies of a real belt system exactly. The bending stiffness, however, is not important for the lower modes
of vibrations. And for the higher modes of vibration the bending stiffness terms become more important than the string
terms.

Let us assume that o is given, and that initially at T ¼ 0 the first N modes are present. If N is not too large the bending
stiffness terms in the problem equation are small, and can be neglected. A string equation (see Eq. (1)) is then obtained.
The problem for the string equation, however, has a serious drawback: the truncation method cannot be applied due to the
presence of internal resonances for which all modes are interacting. And as a consequence, no good approximations of the
exact solution on a long time-scale can be found. Moreover, the resonance frequencies (which are found in this way) might
not correspond to the exact resonance frequencies. Now, there are at least three simplified models depending on the
vibration modes and the corresponding frequencies: a string model for the lower frequencies, a beam–string model (that is,
the exact model) for the intermediate frequencies, and a pure beam model for the higher frequencies. A combination of
these models can improve the results of the existing models and methods. The proposed method is based on calculating the
natural frequencies of each sub-model, and determining the relative errors in it. In this way one can define intervals of
applicability of these simplified models with a predefined, desired accuracy. It should be observed that a pure beam
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equation cannot be truncated either (see Ref. [13]), whereas for a beam–string model there is no problem with truncation.
In this paper a combination of two simplified models will be proposed: a string model for the lower frequencies, and a
string–beam model for the intermediate and the higher frequencies. It will turn out that this combination model has the
following advantages: (1) The model allows to truncate a string equation correctly. (2) The natural frequencies of the lower
vibration modes can be found more accurately, as the small bending stiffness effect has to be included as a small
perturbation into the problem.

When a string-like model is used it has been shown in Refs. [1,2] that the infinite series representation for the solution
cannot be truncated from the mathematical point of view (else one can obtain wrong internal resonances, and incorrect
modal interactions). So, using only a string-like model for which the number of modes is truncated to a finite number can
or will lead to wrong mathematical results. On the other hand, an infinite mode representation for the solution of a string-
like model is physically irrelevant since for the higher order modes the bending stiffness becomes important, and so the
beam–string-like equation has to be studied. In this paper it will be demonstrated how to work with the combined model
that is a string model at the low frequencies and a tensioned beam model at the higher frequencies, such that
mathematically and physically correct results are obtained.

The paper is organized as follows. In Section 2 the formulation of the problem will be given. The regions of applicability
of the simplified models will be determined. In Section 3 the two time-scales perturbation method will be applied to
construct approximate solutions of the problems. Values of o that give rise to internal resonances will be presented. The
non-resonant case and some resonant cases will be studied for four different values of the relative error in Sections 4 and 5.
Stability properties of the solution will also be given in Section 5. Finally, in Section 6 some conclusions will be drawn and
some remarks will be made.

2. Formulation of the problem

In this section a new approach will be proposed to construct a model for an axially moving continuum, which includes
both string type and beam type dynamic behavior. The simplest mechanical model for a traveling belt is a simply supported
tensioned Euler–Bernoulli beam (see Fig. 1). The equation for this model is given by (see also Eq. (2))

UTT þ 2VUXT þ VT UX þ ðV
2 � c2ÞUXX þ

EI

rA
UXXXX ¼ 0. (3)

The speed of the belt is assumed to be time-varying and to be given by VðTÞ ¼ �ðV0 þ a sinðoTÞÞ. The boundary conditions
and the initial conditions for Eq. (3) are given by

Uð0; T; �Þ ¼ UðpL; T; �Þ ¼ UXX ð0; T; �Þ ¼ UXX ðpL; T; �Þ ¼ 0; TX0,

UðX;0; �Þ ¼ f ðXÞ and UT ðX;0; �Þ ¼ rðXÞ; 0oXopL, (4)

where f ðXÞ represents the initial displacement of the belt, rðXÞ is the initial velocity of the belt, and where pL is the distance
between the pulleys. For simplicity it is assumed that the cross-section of the belt has a rectangular shape, so that A ¼ hb

and I ¼ bh3=12, where h is the thickness and b is the width of the belt cross-section, respectively (see Fig. 2). Following the
3D theory of elasticity additional conditions have to be imposed to the stretched beam equation (3), that is: pL=kbh and
bbh, where k is the mode number.

Eq. (3) in non-dimensional form becomes

utt � uxx þ muxxxx ¼ �ð�ao cosðotÞux � 2ðV0 þ a sinðotÞÞuxtÞ � �2ðV0 þ a sinðotÞÞ2uxx, (5)

where x ¼ X=L, V0 ¼ V0=c, t ¼ ðc=LÞT , u ¼ U=L, o ¼ ðL=cÞo, a ¼ a=c and m ¼ EI=rAc2L2 ¼ Eh2=12rc2L2. The boundary
conditions and the initial conditions for Eq. (5) are given by

uð0; t; �Þ ¼ uðp; t; �Þ ¼ uxxð0; t; �Þ ¼ uxxðp; t; �Þ ¼ 0; tX0, (6)
U (X, T)

X

V (T)

�L = l

Fig. 1. The traveling belt system.
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Fig. 2. The traveling belt configuration.
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uðx;0; �Þ ¼ f ðxÞ and utðx;0; �Þ ¼ rðxÞ; 0oxop, (7)

where f ðxÞ ¼ f ðXÞ=L and rðxÞ ¼ rðXÞ=c.
As it was explained in the Introduction, the natural frequencies can usually not be calculated exactly for real problems

of traveling belts due to the presence of complicated boundary conditions, different sorts of (non-)linearities, variable
stiffness, and so on. It is not meaningless to consider only string behavior for the lower vibration modes of the belt (when
the influence of bending stiffness is very small and can be neglected in the Oð1Þ-problem), and the following approach
shows how one can define the regions of applicability. Let us first consider the equation:

utt � uxx þ muxxxx ¼ 0, (8)

subjected to the boundary conditions (6). The parameter m (as defined in Eq. (5)) is usually a small parameter for belt
systems. To determine the natural frequencies of this problem the method of separation of variables can be used, giving as
non-trivial solutions for k ¼ 1;2;3; . . .:

eiOkt sinðkxÞ, (9)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and

Ok ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mk2

q
. (10)

Eq. (10) gives us exact natural frequencies for Eq. (8) subjected to the boundary conditions (6). For the string model
(i.e. Eq. (8) without bending stiffness) and for the beam model (i.e. Eq. (8) without string effect) the natural frequencies also
can be found, so that

Oð1Þ
k
¼ k for the string model,

Oð2Þ
k
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mk2

q
for the stretched beam model, and

Oð3Þ
k
¼ k2 ffiffiffiffi

m
p

for the beam model. (11)

It is possible now to find intervals of applicability of these simplified models (for k), based on the natural frequencies (11),
with a desired or required accuracy. In Table 1 these regions for k are given (where the simplified models, i.e. the string
model and the beam model, can be used) for m equal to 0.0001, 0.002, 0.01, and 0.1, and with relative errors of at most 0.1%,
1%, 3%, and 5% in the frequencies, respectively.

Let us consider a real moving belt, fabricated from rubber, with the following mechanical properties: E ¼ 1:8 GPa,
r ¼ 1:5 g cm�3, h ¼ 0:8 cm, l ¼ 100 m, T0 ¼ 5 N mm�1, and bo3000 mm. This implies that m ¼ 0:002. From Table 1 it can be
seen that with a relative error of 5% in the frequencies the following model can be derived (the original initial-boundary
value problem for Eq. (5) can now be split up by assuming that uðx; tÞ ¼ S1k¼1 ukðtÞ sinðkxÞ):

For 1pkp7—the string model:

utt � uxx ¼ �ð�ao cosðotÞux � 2ðV0 þ a sinðotÞÞuxt � c1uxxxxÞ � �2ðV0 þ a sinðotÞÞ2uxx, (12)

where it is assumed in Eq. (12) that muxxxx ¼ Oð�Þ, so that muxxxx ¼ �c1uxxxx.
For 8pkp68—the beam with string effect model:

utt � uxx þ muxxxx ¼ �ð�ao cosðotÞux � 2ðV0 þ a sinðotÞÞuxtÞ � �2ðV0 þ a sinðotÞÞ2uxx, (13)

where it should be observed that the terms in the left-hand side of Eq. (13) are of leading order, and are of the same order of
magnitude.
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Table 1
Applicability regions for the simplified models: string, beam with string effect, and beam equations.

Rel. error; model m

0.0001 0.002 0.01 0.1

String 1pkp4 k ¼ 1 – –

0.1%;

string–beam
5pkp2234 2pkp691 1pkp223 1pkp70

Beam 2235pko1 692pko1 224pko1 71pko1

String 1pkp14 1pkp3 k ¼ 1 –

1%; string–beam 15pkp702 4pkp161 2pkp70 1pkp23

Beam 703pko1 162pko1 71pko1 24pko1

String 1pkp25 1pkp5 1pkp2 –

3%; string–beam 26pkp399 6pkp89 3pkp39 1pkp12

Beam 400pko1 90pko1 40pko1 13pko1

String 1pkp32 1pkp7 1pkp3 k ¼ 1

5%; string–beam 33pkp304 8pkp68 4pkp30 2pkp9

Beam 305pko1 69pko1 31pko1 10pko1

S.V. Ponomareva, W.T. van Horssen / Journal of Sound and Vibration 325 (2009) 959–973 963
For 69pko1—the beam model:

utt þ muxxxx ¼ � �ao cosðotÞux � 2ðV0 þ a sinðotÞÞuxt þ
1

�
uxx

� �
� �2ðV0 þ a sinðotÞÞ2uxx, (14)

where it should be observed that the terms in the left-hand side of Eq. (14) are at least an order of magnitude larger than
those terms in the right-hand side of Eq. (14).

As it was shown in Ref. [1] the truncation method cannot be applied to the string equation (12), but for the beam with
string effect equation (13) the method can be applied (see Ref. [3]) when the internal resonances are taken into account. In
Ref. [13] it was shown that the truncation method also cannot be applied to the beam equation (14) when one wants
to obtain accurate approximations of the solution on long time-scale. Based on these observations it is assumed now for
simplicity that the original problem (5) is split up into two models: for 1pkp7—the string model (12), and for
8pko1—the beam with string effect model (13). It was shown in Ref. [3] that by substituting uðx; tÞ ¼

P1
n¼1 unðt; �Þ sinðnxÞ

into Eq. (5), by multiplying both sides of the so-obtained equation with sinðkxÞ, and then by integrating with respect to x

from x ¼ 0 to x ¼ p it follows that

€uk þ ðmk4
þ k2
Þuk ¼ �

X1�
n¼1

kn

ðn2 � k2
Þp
ð4ao cosðotÞun þ 8ðV0 þ a sinðotÞÞ _unÞ þOð�2Þ, (15)

where the � in
P1�

n¼1 indicates that the summation is only carried out for n� k is odd. For t ¼ 0 ukðtÞ satisfies:
ukð0; �Þ ¼ 2=Lp

Rp
0 f ðxÞ sinðkxÞdx, and _ukð0; �Þ ¼ 2=cp

Rp
0 rðxÞ sinðkxÞdx. In the next section a two time-scales perturbation

method will be applied to approximate the solution of Eq. (15).
3. Application of the two time-scales perturbation method

To avoid secular terms in the approximate solution of Eqs. (5) and (15) a two time-scales perturbation method is used.
The two new time scales are t0 ¼ t and t1 ¼ �t, implying that ukðt; �Þ ¼ vkðt0; t1; �Þ. The following transformations are
needed for the time derivatives:

duk

dt
¼
qvk

qt0
þ �

qvk

qt1
,

d2uk

dt2
¼
q2vk

qt2
0

þ 2�
q2vk

qt0qt1
þ �2q

2vk

qt2
1

. (16)

It is assumed that vk ¼ vk0 þ �vk1 þ � � �, and vkðt0; t1; �Þ ¼ vð1Þ
k
ðt0; t1; �Þ for 1pkp7 (i.e. the time behavior is mainly

determined by the string model), and vkðt0; t1; �Þ ¼ vð2Þ
k
ðt0; t1; �Þ for 8pko1 (i.e. the time behavior is mainly determined
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by the beam with string effect model). So that, in fact there are two sets of Oð1Þ problems, two sets of Oð�Þ problems, and
so on. By substituting Eq. (16) into Eq. (15), by substituting the expansion for vk into Eq. (15), and by taking together terms
of equal powers in � for vð1Þ

k
and vð2Þ

k
it follows that for 1pkp7:

Oð1Þð1Þ :
q2vð1Þ

k0

qt2
0

þ k2vð1Þ
k0
¼ 0,

Oð�Þð1Þ :
q2vð1Þ

k1

qt2
0

þ k2vð1Þ
k1
¼ � 2

q2vð1Þ
k0

qt0qt1
� c1k4vð1Þ

k0
þ
X7�
n¼1

kn

ðn2 � k2
Þp

4oa cosðotÞvð1Þn0 þ 8ðV0 þ a sinðotÞÞ
qvð1Þn0

qt0

 !

þ
X1�
n¼8

kn

ðn2 � k2
Þp

4oa cosðotÞvð2Þn0 þ 8ðV0 þ a sinðotÞÞ
qvð2Þn0

qt0

 !
, (17)

and for 8pko1:

Oð1Þð2Þ :
q2vð2Þ

k0

qt2
0

þ ðk2
þ mk4

Þvð2Þ
k0
¼ 0,

Oð�Þð2Þ :
q2vð2Þ

k1

qt2
0

þ ðk2
þ mk4

Þvð2Þ
k1
¼ � 2

q2vð2Þ
k0

qt0qt1
þ
X7�
n¼1

kn

ðn2 � k2
Þp

4oa cosðotÞvð1Þn0 þ 8ðV0 þ a sinðotÞÞ
qvð1Þn0

qt0

 !

þ
X1�
n¼8

kn

ðn2 � k2
Þp

4oa cosðotÞvð2Þn0 þ 8ðV0 þ a sinðotÞÞ
qvð2Þn0

qt0

 !
. (18)

Eq. (17) represents the time behavior of the main equation (5) for the first seven modes with small bending stiffness terms.
The second sum in Eq. (17) represents the influence of the beam with string effect model (i.e. the influence of the higher
order modes (kX8) on the lower order modes (ko8)). In the first sum in Eq. (18) there still is the influence of the string
modes on the higher order modes. So, there is an interaction between the two models. In Eq. (18) the bending stiffness
terms are now of leading order. The solution of the Oð1Þð1Þ-problem is given by

vð1Þ
k0
¼ Ak0ðt1Þ sinðOð1Þ

k
t0Þ þ Bk0ðt1Þ cosðOð1Þ

k
t0Þ; k ¼ 1;2; . . . ;7. (19)

The solution of the Oð1Þð2Þ-problem is given by

vð2Þ
k0
¼ Ak0ðt1Þ sinðOð2Þ

k
t0Þ þ Bk0ðt1Þ cosðOð2Þ

k
t0Þ; k ¼ 8;9; . . . . (20)

In Eqs. (19) and (20) Oð1Þ
k

and Oð2Þ
k

are given by Eq. (11). Ak0ðt1Þ and Bk0ðt1Þ are still arbitrary functions and can be used
to avoid secular terms in the solutions of the Oð�Þð1Þ-problem and the Oð�Þð2Þ-problem. The Oð�Þð1Þ equation now becomes
(for k ¼ 1;2; . . . ;7)

q2vð1Þ
k1

qt2
0

þ ðOð1Þ
k
Þ2vð1Þ

k1
¼ � 2Oð1Þ

k

qAk0

qt1
cosðOð1Þ

k
t0Þ �

qBk0

qt1
sinðOð1Þ

k
t0Þ

� �

� c1k4
ðAk0ðt1Þ sinðOð1Þ

k
t0Þ þ Bk0ðt1Þ cosðOð1Þ

k
t0ÞÞ

þ
X7�
n¼1

kn

ðn2 � k2
Þp

4oa cosðotÞAn0ðt1Þ sinðOð1Þn t0Þ þ Bn0ðt1Þ cosðOð1Þn t0Þ

(

þ 8ðV0 þ a sinðotÞÞOð1Þn ðAn0ðt1Þ cosðOð1Þn t0Þ � Bn0ðt1Þ sinðOð1Þn t0ÞÞ

)

þ
X1�
n¼8

kn

ðn2 � k2
Þp

4oa cosðotÞAn0ðt1Þ sinðOð2Þn t0Þ þ Bn0ðt1Þ cosðOð2Þn t0Þ

(

þ 8ðV0 þ a sinðotÞÞOð2Þn ðAn0ðt1Þ cosðOð2Þn t0Þ � Bn0ðt1Þ sinðOð2Þn t0ÞÞ

)
, (21)
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and the Oð�Þð2Þ equation is given by (for k ¼ 8;9; . . .)

q2vð2Þ
k1

qt2
0

þ ðOð2Þ
k
Þ2vð2Þ

k1
¼ � 2Oð2Þ

k

qAk0

qt1
cosðOð2Þ

k
t0Þ �

qBk0

qt1
sinðOð2Þ

k
t0Þ

� �

þ
X7�
n¼1

kn

ðn2 � k2
Þp

4oa cosðotÞAn0ðt1Þ sinðOð1Þn t0Þ þ Bn0ðt1Þ cosðOð1Þn t0Þ

(

þ 8ðV0 þ a sinðotÞÞOð1Þn ðAn0ðt1Þ cosðOð1Þn t0Þ � Bn0ðt1Þ sinðOð1Þn t0ÞÞ

)

þ
X1�
n¼8

kn

ðn2 � k2
Þp

4oa cosðotÞAn0ðt1Þ sinðOð2Þn t0Þ þ Bn0ðt1Þ cosðOð2Þn t0Þ

(

þ 8ðV0 þ a sinðotÞÞOð2Þn An0ðt1Þ cosðOð2Þn t0Þ � Bn0ðt1Þ sinðOð2Þn t0Þ

� �)
. (22)

From Eqs. (21) and (22) it can readily be seen that there are infinitely many values of o that can give rise to internal
resonances. In fact these values are (in an Oð�Þ neighborhood of)

ðiÞ o�Oð1Þn ¼ �O
ð1Þ
k

for n; k ¼ 1;2; . . . ;7,

ðiiÞ o�Oð2Þn ¼ �O
ð1Þ
k

for k ¼ 1;2; . . . ;7; and n ¼ 8;9; . . . ,

ðiiiÞ o�Oð1Þn ¼ �O
ð2Þ
k

for n ¼ 1;2; . . . ;7; and k ¼ 8;9; . . . ,

ðivÞ o�Oð2Þn ¼ �O
ð2Þ
k

for n ¼ 8;9; . . . ; and k ¼ 8;9; . . . . (23)

For all resonant cases (i)–(iv) the additional condition that k� n is an odd number, still holds due to summation in Eq. (15).
By interchanging n and k, the resonant case (ii) (derived out of the Oð�Þð1Þ-problem) becomes the resonant case (iii) (derived
out of the Oð�Þð2Þ-problem). The resonant case (i) is a resonance condition for the string equation, and has been investigated
in Ref. [1]. The resonant case (iv) is a resonance condition for the beam with string effect equation. The solutions and
stability conditions for this case can be found in Ref. [3]. Due to the interactions of these two models the model as proposed
here has additional resonance conditions (ii) and (iii), where o might be the sum or difference of one natural frequency of
the string and one natural frequency of the beam with string effect. It is also necessary to investigate additionally if o in the
resonant case (i) also satisfies the cases (ii), (iii), and (iv), and vice versa. In the following section m and �will be taken equal
to 0.002 and 0.01, respectively, and the initial value problem for Eq. (15) will be studied for different values of the relative
error (in the frequencies) and for different values of o.
4. Application of the method with a relative error of 5%

In this section the non-resonant and some resonant cases will be studied when the relative error in the frequencies is at
most 5%.
4.1. The non-resonant case

In this case it is assumed that the frequency o of the velocity-fluctuations of the axially moving continuum is not equal
to any combination of the resonance frequencies as listed in Eq. (23). To eliminate the secular terms in the solution of the
Oð�Þð1Þ-problem and the Oð�Þð2Þ-problem it follows that Ak0 and Bk0 have to satisfy

dAk0

dt1
¼ �

c1k3

2
Bk0;

dBk0

dt1
¼

c1k3

2
Ak0;

8>>>><
>>>>:

(24)
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for 1pkp7, and where c1 is given by m ¼ c1�, and

dAk0

dt1
¼ 0

dBk0

dt1
¼ 0

8>>><
>>>:

()
Ak0ðt1Þ ¼ Ak0ð0Þ;

Bk0ðt1Þ ¼ Bk0ð0Þ;

(
(25)

for 8pko1. In this case system (24) can be seen as some sort of correction on the slow time (t1) behavior of the solution in
the first seven vibration modes due to the presence of the small bending stiffness term in the Oð�Þð1Þ-problem. In fact it can
be seen as a correction on the frequencies of the oscillation modes for 1pkp7 since the solution of Eq. (24) is given by

Ak0ðt1Þ ¼ K1k cos
c1k3

2
t1

 !
� K2k sin

c1k3

2
t1

 !
;

Bk0ðt1Þ ¼ K1k sin
c1k3

2
t1

 !
þ K2k cos

c1k3

2
t1

 !
;

8>>>>><
>>>>>:

(26)

for 1pkp7, and where K1k and K2k are all constant of integration. From the initial conditions (7) it follows that

f ðxÞ ¼
X1
k¼1

ukð0; �Þ sinðkxÞ () ukð0; �Þ ¼
2

p

Z p

0
f ðxÞ sinðkxÞdx,

rðxÞ ¼
X1
k¼1

_ukð0; �Þ sinðkxÞ () _ukð0; �Þ ¼
2

p

Z p

0
rðxÞ sinðkxÞdx.

Moreover, since ukð0; �Þ ¼ vkð0;0; �Þ ¼ vk0ð0;0; �Þ þ �vk1ð0;0; �Þ þ �
2vk2ð0;0; �Þ þ � � �, and _ukð0; �Þ ¼ _vkð0;0; �Þ ¼ _vk0ð0;0; �Þ þ

� _vk1ð0;0; �Þ þ �
2 _vk2ð0;0; �Þ þ � � � it follows that

vkð0; �Þ ¼
2

p

Z p

0
f ðxÞ sinðkxÞdx and _vkð0; �Þ ¼

2

p

Z p

0
rðxÞ sinðkxÞdx. (27)

From Eqs. (19), (20) and (27) the following condition for Ak0ð0Þ and Bk0ð0Þ can be obtained:

Ak0ð0Þ ¼
2k

p

Z p

0
rðxÞ sinðkxÞdx,

Bk0ð0Þ ¼
2

p

Z p

0
f ðxÞ sinðkxÞdx. (28)

All constants of integration in Eq. (26) can now be found using Eq. (28). The solution vð1Þ
k0

can now be obtained for 1pkp7,
that is

vð1Þ
k0
¼ Ak0ð0Þ sinðkðt0 þ 0:1k3t1ÞÞ þ Bk0ð0Þ cosðkðt0 þ 0:1k3t1ÞÞ. (29)

The solution vð2Þ
k0

for k ¼ 8;9; . . . can now also be found, using Eqs. (20) and (25):

vð2Þ
k0
¼ Ak0ð0Þ sinðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:002k2

q
t0Þ þ Bk0ð0Þ cosðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:002k2

q
t0Þ. (30)

From Eq. (29) it follows that kðt0 þ 0:1k3t1Þ ¼ ðkþ 0:001k3
Þt, so the frequencies for the first seven modes are approximated

by kþ 0:001k3. Observing Eq. (30) the frequency of the higher modes is k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:002k2

q
. The exact frequencies for

k ¼ 1; . . . ;7 are also given by k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:002k2

q
. The difference between the exact and the approximated frequencies are

jkþ 0:001k3
� k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:002k2

q
jp0:008 for 1pkp7. This means that due to the application of the two time-scales

perturbation method there is a slow time t1 correction in the string model frequency which represents the effect of the

small bending stiffness for the lower oscillation modes with 1pkp7.

4.2. Some resonant cases

The following resonant cases will be investigated:

o ¼ m� ðwhere m� is equal to 1;3;5 or 7Þ,

o ¼ Oð2Þ9 �Oð2Þ8 ða difference type of resonanceÞ,

o ¼ Oð1Þ1 �Oð2Þ8 (an additional difference type of resonance),
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o ¼ Oð2Þ9 þOð2Þ8 (a sum type of resonance),

o ¼ Oð1Þ1 þOð2Þ8 (an additional sum type of resonance),

o ¼ Oð1Þ7 �Oð2Þ8 (an additional difference type of resonance),

o ¼ Oð1Þ7 þOð2Þ8 (an additional sum type of resonance), and

o ¼ 2Oð2Þ8 (usually referred to as a principal parametric resonance). (31)

4.2.1. The resonant case o ¼ m�, where m� is equal to 1, 3, 5 or 7

First, the case o ¼ m� ¼ 1 (the first ‘‘string’’ resonant frequency) will be studied. It was shown in Ref. [1] that the case (i)
in Eq. (23), i.e. o�Oð1Þn ¼ �O

ð1Þ
k

, with n; k ¼ 1;2; . . . ;7; and o ¼ 1 has solutions: k ¼ nþ 1 and k ¼ n� 1. Additionally it has
to be checked whether the resonance conditions (ii)–(iv) in Eq. (23) also have solutions if o ¼ 1 or not. It can readily be
verified that there are no such k and n. Therefore, in order to eliminate secular terms in the solution of the Oð�Þð1Þ-problem
(see Eq. (21)) Ak0 and Bk0 for 1pkp7 have to satisfy

dAk0

dt1
¼ �

c1k3

2
Bk0 �

a
p
ðk� 1ÞBðk�1Þ0 �

a
p
ðkþ 1ÞBðkþ1Þ0;

dBk0

dt1
¼

c1k3

2
Ak0 þ

a
pðk� 1ÞAðk�1Þ0 þ

a
pðkþ 1ÞAðkþ1Þ0;

8>>>><
>>>>:

(32)

and the other Ak0 and Bk0 functions with 8pko1, derived from the Oð�Þð2Þ-problem (22), satisfy the same equations as for
the non-resonant case (see Eq. (25)). It is clear from system (32), and from system (25), that there are interactions between
the first eight modes. For the higher order vibration modes (i.e. for the 9th vibration mode and higher) there are no such
interactions. Therefore there is no problem with applying the truncation method as it was in Ref. [1] for a string model
(without bending stiffness). For the case o ¼ m� it is assumed that m� is equal to 3, 5, or 7 (o ¼ m� is a resonance
frequency from the string model). Following the same procedure as for the case o ¼ 1, the following equations for Ak0 and
Bk0 can be found:

dAk0

dt1
¼ �

c1k3

2m�
Bk0 �

a
p
ðk�m�Þð2k� 2m� þ 1Þ

m�ð2k�m�Þ
Bðk�m�Þ0 �

a
p
ðkþm�Þð2kþ 2m� � 1Þ

m�ð2kþm�Þ
Bðkþm�Þ0;

dBk0

dt1
¼

c1k3

2m�
Ak0 þ

a
p
ðk�m�Þð2k� 2m� þ 1Þ

m�ð2k�m�Þ
Aðk�m�Þ0 þ

a
p
ðkþm�Þð2kþ 2m� � 1Þ

m�ð2kþm�Þ
Aðkþm�Þ0;

8>>>><
>>>>:

(33)

for 1pkp7 (where Ak0 and Bk0 are assumed to be zero for kp0). For the higher order modes (8pko1) system (25) still
holds. It can be seen from Eqs. (33) and (25) that there are interactions between the first ð7þm�Þ modes. For the higher
order modes there are no interactions.

To check the stability of the solution the following approach can be used. From Eqs. (32) and (33) it follows that, in
general, the equation _X ¼ MX has to be solved, where the vector X contains the unknown functions Ak0ðt1Þ and Bk0ðt1Þ, and
where M is a corresponding square matrix of the size (7+m�) with constant elements. The eigenvalues of the matrix M

define the stability properties of the system. It turns out that for all m� (that is, for m� ¼ 1;3;5; and 7) all eigenvalues of
matrix M are purely imaginary or zeros, and that all solutions are bounded and stable in this case.

4.2.2. The resonant case o ¼ Oð2Þ9 �Oð2Þ8 : a difference type of resonance

One of the difference type of resonances of the stretched beam model (see case (iv) of Eq. (23)) will be studied in this

subsection. The frequency of the belt velocity fluctuationso is assumed to be equal to Oð2Þ9 �Oð2Þ8 . The equationo�Oð2Þn ¼ �O
ð2Þ
k

for n ¼ 8;9; . . . and k ¼ 8;9; . . . has only trivial solutions for n ¼ 8 and k ¼ 9 if oþOð2Þn ¼ Oð2Þ
k

, and n ¼ 9 and k ¼ 8 if oþ

Oð2Þn ¼ Oð2Þ
k

(detailed calculations to prove this can be found in Ref. [3]). Additionally it has to be checked whether the resonance

conditions (i)–(iii) in Eq. (23) also have solutions if o ¼ Oð2Þ9 �Oð2Þ8 or not. It can be verified that there are no such k and n.

Therefore, in order to eliminate secular terms in the solution of the Oð�Þð2Þ-problem (see Eq. (22)) Ak0 and Bk0 have to satisfy:

dA8;0

dt1
¼ �

72a
17p

Oð2Þ9 þOð2Þ8

Oð2Þ8

0
@

1
AB9;0;

dB8;0

dt1
¼

72a
17p

Oð2Þ9 þOð2Þ8

Oð2Þ8

0
@

1
AA9;0

8>>>>>>><
>>>>>>>:
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and

dA9;0

dt1
¼ �

72a
17p

Oð2Þ9 þOð2Þ8

Oð2Þ9

0
@

1
AB8;0;

dB9;0

dt1
¼

72a
17p

Oð2Þ9 þOð2Þ8

Oð2Þ9

0
@

1
AA8;0:

8>>>>>>><
>>>>>>>:

(34)

It can be seen from Eq. (34) that there are interactions between the 8th and the 9th vibration modes. In order to avoid

secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ -problems if o ¼ Oð2Þ9 �Oð2Þ8 the following results were found. For

vibration modes with 1pkp7 Ak0 and Bk0 are still given by Eq. (24). This can be seen as an influence of the small bending

stiffness term in the Oð�Þð1Þ-problem. For the 8th and the 9th vibration modes Ak0 and Bk0 have to satisfy Eq. (34). And for

the higher order vibration modes with 10pko1 Ak0 and Bk0 have to satisfy Eq. (25). To check the stability the eigenvalues

of the corresponding matrix M have to be calculated. It turns out that all eigenvalues are purely imaginary or zeros, and
that all solutions in this case are bounded and stable.

4.2.3. The resonant case o ¼ Oð1Þ1 �Oð2Þ8 : an additional difference type of resonance

One of the additional difference type of resonances of the string–beam model (see case (ii) of Eq. (23)) will be studied in

this subsection. The frequency of the belt velocity fluctuations o is assumed to be equal to Oð1Þ1 �Oð2Þ8 . The equation

o�Oð2Þn ¼ �O
ð1Þ
k

for n ¼ 8;9; . . . and k ¼ 1;2; . . .7 has only a trivial solution for n ¼ 8 and k ¼ 1. Additionally it has to be

checked whether the resonance conditions (i), (iii) and (iv) in Eq. (23) also have solutions if o ¼ Oð1Þ1 �Oð2Þ8 or not. It turns

out that there is one solution in case (iii) (see Eq. (23)): the equation o�Oð1Þn ¼ �O
ð2Þ
k

for k ¼ 8;9; . . . and n ¼ 1;2; . . .7 has

a solution n ¼ 1 and k ¼ 8 if o�Oð1Þn ¼ �O
ð2Þ
k

. Therefore, in order to eliminate secular terms in the solution of the Oð�Þð1Þ

and Oð�Þð2Þ-problems (see Eqs. (21) and (22)) Ak0 and Bk0 have to satisfy

dA1;0

dt1
¼ �

c1

2Oð1Þ1

B1;0 þ
8a

63p
Oð1Þ1 þOð2Þ8

Oð1Þ1

0
@

1
AB8;0;

dB1;0

dt1
¼

c1

2Oð1Þ1

A1;0 �
8a

63p
Oð1Þ1 þOð2Þ8

Oð1Þ1

0
@

1
AA8;0

8>>>>>>><
>>>>>>>:

and

dA8;0

dt1
¼

8a
63p

Oð1Þ1 þOð2Þ8

Oð2Þ8

0
@

1
AB1;0;

dB8;0

dt1
¼ �

8a
63p

Oð1Þ1 þOð2Þ8

Oð2Þ8

0
@

1
AA1;0:

8>>>>>>><
>>>>>>>:

(35)

It can be seen from Eq. (35) that there are interactions between the 1st and the 8th vibration modes. In order to avoid

secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ-problems if o ¼ Oð1Þ1 �Oð2Þ8 the following results were found.

For the 1st vibration mode (with k ¼ 1) Ak0 and Bk0 are given by the first system of Eq. (35). For the vibration

modes with 2pkp7 Ak0 and Bk0 are still given by Eq. (24). For the 8th vibration mode (with k ¼ 8) Ak0 and Bk0 are

given by the second system of Eq. (35). And for the higher order vibration modes with 9pko1 Ak0 and Bk0 have to satisfy

Eq. (25).
To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that all

eigenvalues are purely imaginary or zeros, and that all solutions in this case are bounded and stable.

4.2.4. The resonant case o ¼ Oð2Þ9 þOð2Þ8 : a sum type of resonance

One of the sum type of resonances of the stretched beam model (see case (iv) of Eq. (23)) will be studied in this

subsection. The frequency of the belt velocity fluctuations o is equal to Oð2Þ9 þOð2Þ8 . The equation o�Oð2Þn ¼ �O
ð2Þ
k

for

n ¼ 8;9; . . . and k ¼ 8;9; . . . has only trivial solutions for n ¼ 8 and k ¼ 9, and symmetrically n ¼ 9 and k ¼ 8 if o�Oð2Þn ¼

Oð2Þ
k

(detailed calculations to prove this can be found in Ref. [3]). Additionally it has to be checked whether the resonance

conditions (i)–(iii) in Eq. (23) also have solutions or not if o ¼ Oð2Þ9 þOð2Þ8 . It can be verified that there are no such

k and n. Therefore, in order to eliminate secular terms in the solution of the Oð�Þð2Þ-problem (see Eq. (22)) Ak0 and Bk0 have
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to satisfy

dA8;0

dt1
¼

72a
17p

Oð2Þ8 �Oð2Þ9

Oð2Þ8

0
@

1
AB9;0;

dB8;0

dt1
¼

72a
17p

Oð2Þ8 �Oð2Þ9

Oð2Þ8

0
@

1
AA9;0

8>>>>>>><
>>>>>>>:

and

dA9;0

dt1
¼

72a
17p

Oð2Þ8 �Oð2Þ9

Oð2Þ9

0
@

1
AB8;0;

dB9;0

dt1
¼

72a
17p

Oð2Þ8 �Oð2Þ9

Oð2Þ9

0
@

1
AA8;0:

8>>>>>>><
>>>>>>>:

(36)

It can be seen from Eq. (36) that there are interactions between the 8th and the 9th vibration modes. In order to avoid

secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ-problems if o ¼ Oð2Þ9 þOð2Þ8 the following results were found. For

the vibration modes with 1pkp7 Ak0 and Bk0 still have to satisfy Eq. (24). This can be seen as an influence of the small

bending stiffness term in the Oð�Þð1Þ-problem. For the 8th and the 9th vibration modes Ak0 and Bk0 have to satisfy Eq. (36).

And for the higher order vibration modes with 10pko1 Ak0 and Bk0 have to satisfy Eq. (25).

To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that some of the
eigenvalues have positive real parts, and that some of the solutions in this case are unstable.
4.2.5. The resonant case o ¼ Oð1Þ1 þOð2Þ8 : an additional sum type of resonance

One of the additional sum type of resonances of the string–beam model (see case (ii) of Eq. (23)) will be studied in this

subsection. The frequency of the belt velocity fluctuations o is assumed to be equal to Oð1Þ1 þOð2Þ8 . The equation o�Oð2Þn ¼

�Oð1Þ
k

for n ¼ 8;9; . . . and k ¼ 1;2; . . .7 has only a trivial solution for n ¼ 8 and k ¼ 1 if o�Oð2Þn ¼ Oð1Þ
k

. Additionally it has to

be checked whether the resonance conditions (i), (iii) and (iv) in Eq. (23) also have solutions if o ¼ Oð1Þ1 þOð2Þ8 or not. It

turns out that there is one solution in case (iii) case (see Eq. (23)): the equation o�Oð1Þn ¼ �O
ð2Þ
k

for k ¼ 8;9; . . . and

n ¼ 1;2; . . .7 has a solution n ¼ 1 and k ¼ 8 if o�Oð1Þn ¼ Oð2Þ
k

. Therefore, in order to eliminate secular terms in the solution

of the Oð�Þð1Þ and Oð�Þð2Þ-problems (see Eqs. (21) and (22)) Ak0 and Bk0 have to satisfy

dA1;0

dt1
¼ �

c1

2Oð1Þ1

B1;0 þ
8a

63p
Oð1Þ1 �Oð2Þ8

Oð1Þ1

0
@

1
AB8;0;

dB1;0

dt1
¼

c1

2Oð1Þ1

A1;0 þ
8a

63p
Oð1Þ1 �Oð2Þ8

Oð1Þ1

0
@

1
AA8;0

8>>>>>>><
>>>>>>>:

and

dA8;0

dt1
¼

8a
63p

Oð1Þ1 �Oð2Þ8

Oð2Þ8

0
@

1
AB1;0;

dB8;0

dt1
¼

8a
63p

Oð1Þ1 �Oð2Þ8

Oð2Þ8

0
@

1
AA1;0:

8>>>>>>><
>>>>>>>:

(37)

It can be seen from Eqs. (37) that there are interactions between the 1st and the 8th vibration modes. In order to avoid

secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ-problems if o ¼ Oð1Þ1 þOð2Þ8 the following results were found. For

the 1st vibration mode (with k ¼ 1) Ak0 and Bk0 are given by the first system of Eq. (37). For the vibration modes with

2pkp7 Ak0 and Bk0 still have to satisfy Eq. (24). For the 8th vibration mode (with k ¼ 8) Ak0 and Bk0 have to satisfy the

second system of Eq. (37). And for the higher order vibration modes with 9pko1 Ak0 and Bk0 have to satisfy Eq. (25).

To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that some of the
eigenvalues have positive real parts, and that some of the solutions in this case are unstable.
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4.2.6. The resonant case o ¼ Oð1Þ7 �Oð2Þ8 : an additional difference type of resonance

One of the additional difference type of resonances of the string–beam model (see case (ii) of Eq. (23)) will be studied in

this subsection. The frequency of the belt velocity fluctuations o is assumed to be equal to Oð1Þ7 �Oð2Þ8 . The equation

o�Oð2Þn ¼ �O
ð1Þ
k

for n ¼ 8;9; . . . and k ¼ 1;2; . . .7 has only a trivial solution n ¼ 8 and k ¼ 7 if oþOð2Þn ¼ Oð1Þ
k

. Additionally

it has to be checked whether the resonance conditions (i), (iii) and (iv) in Eq. (23) also have solutions or not if

o ¼ Oð1Þ7 �Oð2Þ8 . It turns out that there is one solution in case (iii) (see Eq. (23)): the equation o�Oð1Þn ¼ �O
ð2Þ
k

for

k ¼ 8;9; . . . and n ¼ 1;2; . . .7 has a solution n ¼ 7 and k ¼ 8 if o�Oð1Þn ¼ �O
ð2Þ
k

. Therefore, in order to eliminate secular

terms in the solution of the Oð�Þð1Þ and Oð�Þð2Þ-problems (see Eqs. (21) and (22)) Ak0 and Bk0 have to satisfy

dA7;0

dt1
¼ �

c12401

2Oð1Þ7

B7;0 þ
56a
15p

Oð1Þ7 þOð2Þ8

Oð1Þ7

0
@

1
AB8;0;

dB7;0

dt1
¼

c12401

2Oð1Þ7

A7;0 �
56a
15p

Oð1Þ7 þOð2Þ8

Oð1Þ7

0
@

1
AA8;0

8>>>>>>><
>>>>>>>:

and

dA8;0

dt1
¼

56a
15p

Oð1Þ7 þOð2Þ8

Oð2Þ8

0
@

1
AB7;0;

dB8;0

dt1
¼ �

56a
15p

Oð1Þ7 þOð2Þ8

Oð2Þ8

0
@

1
AA7;0:

8>>>>>>><
>>>>>>>:

(38)

It can be seen from Eq. (35) that there are interactions between the 7th and the 8th vibration modes. In order to avoid

secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ-problems if o ¼ Oð1Þ7 �Oð2Þ8 the following results were found. For

the vibration modes with 1pkp6 Ak0 and Bk0 still have to satisfy Eq. (24). For the 7th and 8th vibration modes (with k ¼ 7

and 8) Ak0 and Bk0 have to satisfy Eq. (38). And for the higher order vibration modes with 9pko1 Ak0 and Bk0 have to

satisfy Eq. (25).
To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that all

eigenvalues are purely imaginary or zeros, and that all solutions in this case are bounded and stable.

4.2.7. The resonant case o ¼ Oð1Þ7 þOð2Þ8 : an additional sum type of resonance

One of the additional sum type of resonances of the string–beam model (see case (ii) of Eq. (23)) will be studied in this

subsection. The frequency of the belt velocity fluctuations o is assumed to be equal to Oð1Þ7 þOð2Þ8 . The equation o�Oð2Þn ¼

�Oð1Þ
k

for n ¼ 8;9; . . . and k ¼ 1;2; . . .7 has only a trivial solution n ¼ 8 and k ¼ 7 if o�Oð2Þn ¼ Oð1Þ
k

. Additionally it has to be

checked whether the resonance conditions (i), (iii) and (iv) in Eq. (23) also have any solutions if o ¼ Oð1Þ7 þOð2Þ8 or not. It

turns out that there is one solution in case (iii) (see Eq. (23)): the equation o�Oð1Þn ¼ �O
ð2Þ
k

for k ¼ 8;9; . . . and n ¼

1;2; . . .7 has a solution n ¼ 7 and k ¼ 8 if o�Oð1Þn ¼ Oð2Þ
k

. It was also found for the case (iv) of Eq. (23) that n ¼ 20 and

k ¼ 27 if oþOð2Þn ¼ Oð2Þ
k

and n ¼ 27 and k ¼ 20 if o�Oð2Þn ¼ �O
ð2Þ
k

then jo�Oð2Þn �Oð2Þ
k
j ¼ 0:0012o�. This can be seen as

a detuning case if o ¼ Oð1Þ7 þOð2Þ8 . Therefore, in order to eliminate secular terms in the solution of the Oð�Þð1Þ and Oð�Þð2Þ-
problems (see Eqs. (21) and (22)) Ak0 and Bk0 have to satisfy

dA7;0

dt1
¼ �
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dt1
¼
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A7;0 þ
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15p
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0
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1
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8>>>>>>><
>>>>>>>:

and

dA8;0

dt1
¼

56a
15p

Oð1Þ7 �Oð2Þ8

Oð2Þ8

0
@

1
AB7;0;

dB8;0

dt1
¼

56a
15p

Oð1Þ7 �Oð2Þ8

Oð2Þ8

0
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>>>>>>>:

(39)
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and, additionally,

dA20;0

dt1
¼ �
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1
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and
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dt1
¼ �
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1
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1
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(40)

It can be seen from Eqs. (39) and (40) that there are interactions between the 7th and the 8th, and the 20th and the 27th

vibration modes, respectively. In order to avoid secular terms in the solutions of the Oð�Þð1Þ and Oð�Þð2Þ-problems if o ¼

Oð1Þ7 þOð2Þ8 the following results were found. For the vibration modes with 1pkp6 Ak0 and Bk0 are still given by

Eq. (24). For the 7th and 8th vibration modes (with k ¼ 7 and 8) Ak0 and Bk0 are given by Eq. (39). For the vibration modes with

9pkp19 and 21pkp26 Ak0 and Bk0 still have to satisfy Eq. (25). For the 20th and 27th vibration modes (with k ¼ 20 and 27)

Ak0 and Bk0 have to satisfy Eq. (40). And for the higher order vibration modes with 28pko1 Ak0 and Bk0 have to satisfy Eq. (25).

To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that some of the
eigenvalues have positive real parts, and that some of the solutions in this case are unstable.

4.2.8. The resonant case o ¼ 2Oð2Þ8 : a principal parametric resonance

One of the principal parametric resonances of the stretched beam model will be studied in this subsection. The

frequency of the belt velocity fluctuations o is assumed to be equal to 2Oð2Þ8 . The equation o�Oð2Þn ¼ �O
ð2Þ
k

for n ¼ 8;9; . . .

and k ¼ 8;9; . . . has no solutions. Additionally it has to be checked whether the resonance conditions (i)–(iii) in Eq. (23) also

have solutions or not if o ¼ 2Oð2Þ8 . It can be verified that there are no such k and n. Therefore, in order to eliminate secular

terms in the solution of the Oð�Þð1Þ and Oð�Þð1Þ-problems (see Eqs. (21) and (22)) Ak0 and Bk0 have to satisfy (the same as for

the non-resonant case): Eq. (32) for 1pkp7 and Eq. (33) for 8pko1. It has already been shown in Ref. [3] that in case of
principal parametric resonance the possibility to have solutions (interactions between vibration modes) for the case (iv) of
Eq. (23) depends on the value of m. It turns out here that in the particular case m ¼ 0:002 (as it was fixed in the beginning)

o ¼ 2Oð2Þ8 is not a resonance frequency.

To check the stability the eigenvalues of the corresponding matrix M have to be calculated. It turns out that all
eigenvalues are purely imaginary or zeros, and that all solutions in this case are bounded and stable.

5. Application of the method with a relative error of 3%, 1%, and 0.1%

The analysis as given in the previous section (when the relative errors in the frequencies are at most 5%) can be repeated
for the cases when the relative errors in the frequencies are at most 3%, or 1%, or 0.1%. The detailed computations will be
Table 2
Stability properties of the solutions.

Frequency o Relative error

5% 3% 1% 0.1% Exact 0% (see Ref. [3])

o ¼ m� ,

m� ¼1,3,5 and 7 Stable Stable Stable Stable Stable

o ¼ Oð2Þ9 �Oð2Þ8
Stable Stable Stable Stable Stable

o ¼ Oð1Þ1 �Oð2Þ8
Stable Stable Stable Stable Stable

o ¼ Oð2Þ9 þOð2Þ8
Unstable Unstable Unstable Unstable Unstable

o ¼ Oð1Þ1 þOð2Þ8
Unstable Unstable Unstable Unstable Unstable

o ¼ Oð1Þ7 �Oð2Þ8
Stable Stable Stable Stable Stable

o ¼ Oð1Þ7 þOð2Þ8
Unstable Stable Stable Stable Stable

o ¼ 2Oð2Þ8
Stable Stable Stable Stable Stable
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omitted in this paper, but can be found in Ref. [15]. The stability properties of the solutions when the relative errors in the
frequencies are at most 5%, 3%, 1%, or 0.1%, as well as the exact stability properties (i.e. the relative error is 0%) are given in
Table 2.

To verify the method which was proposed in this paper the following approach will be used. Stability properties of
the solutions which were derived will be compared with the stability properties of the exact solution of problem (5)
(the correct properties can be found in Ref. [3]). It can be seen from Table 2 that the stability properties remain the same for
almost all these cases, and correspond to the stability properties of the exact solution of the problem. For the case
o ¼ Oð1Þ7 þOð2Þ8 (see Table 2) and relative error of at most 5% the solution is unstable. On the other hand, for the same
frequency o but with a better accuracy (relative error of 3%, 1%, and 0.1%) the solution is stable, which corresponds
also to the exact solution of the problem. This difference occurs because the resonance frequency o ¼ Oð1Þ7 þOð2Þ8 was
derived from the combination of the string model and the stretched beam model. For the case of a relative error of 5%
(see Section 4) the value Oð1Þ7 is still in the region of the string model. For the other cases the region of the string model is
smaller, so that this combination is not a resonance frequency anymore. It can also be seen from Table 2 that difference type
of resonances are stable and sum type or resonances are unstable. This behavior corresponds with the stability properties
of the exact solution which was found in Ref. [3].
6. Conclusions and remarks

In this paper an initial-boundary value problem for a linear equation, describing an axially moving stretched
beam has been studied. This equation can be used as a model for the transversal vibrations of a conveyor belt system. The
axially moving belt is assumed to move in one direction with a non-constant speed VðtÞ, that is, VðtÞ ¼ �ðV0 þ a sinðotÞÞ,
where 0o�51, and where V0;a and o are positive constants. For V0 it is assumed that V040 and V04jaj. A new model
approach describing the transient ‘‘from string to beam’’ behavior, based on the calculations of the natural frequencies has
been proposed. The influence of the bending stiffness on the stability properties of the solution of the problem has been
studied.

Depending on the natural frequencies the original problem is split up into two sub-models: a string model for the lower
frequencies and a stretched beam model for the higher frequencies. Each sub-model has its own physical and mathematical
properties. For the string model, for instance, the discussion on the applicability of the truncation method is not
(mathematically) relevant anymore (see also Ref. [1]). In this combination model the sub-models are interacting due to
internal resonances, and the model equations depend on the frequencies and on the vibration mode numbers. The
proposed model is a more realistic approach to describe the dynamical behavior of a traveling continuum as the bending
stiffness becomes more important for the higher order vibration modes. For the lower frequencies the bending stiffness can
be neglected and the string equation can be used. The regions of applicability of the simplified models were found for
different values of the bending stiffness parameter and for different values of the relative errors in the frequencies. It turns
out that there are infinitely many values of o that give rise to internal resonances in the axially moving belt system. In fact,
that happens when o is equal to any sum or difference combination of the natural frequencies of the string and (or) the
stretched beam equations. In the non-resonant case it can clearly be seen that for the lower frequencies (when the string
model is used) the perturbation approach leads to improvements in the frequencies taking into account the small bending
stiffness. The formal approximations of the solution and the stability properties in some resonant cases have been
determined for four different values of the relative error in the frequencies: 5%, 3%, 1% and 0.1%. It can be concluded that the
properties of the studied problem remain the same and correspond to the properties of the exact solution of the problem
(5) when the relative errors in the frequencies are less than 5%.

An important implication of the results as presented in the literature (see, for instance Refs. [1–3]) is that for these types
of problems the use of only string-like models is not appropriate. To describe the dynamics of these types of conveyor belt
problems correctly one has to include bending stiffness in the model (also when the bending stiffness is assumed to be
small). In this paper it has explicitly been shown how one should work with a combined model that is a string model at the
low frequencies and a tensioned beam model at the higher frequencies.

It has also to be noticed that the introduction of a damping term does not solve the truncation problem for
the string-like equation (1), at least if the damping is assumed to be small and of order �. The viscous damping
or the structural damping can be taken into account for the partial differential equations (1) and (2), leading to the
appearance of extra terms in these equations: ut þ Vux, utxx þ Vuxxx, or utxxxx þ Vuxxxxx, respectively (for the moving frame
of reference). If the damping in the problem is assumed to be small, that is of order �, then after applying the two
time-scales perturbation method to the equations, terms ut þ Vux, utxx þ Vuxxx, or utxxxx þ Vuxxxxx will appear. At high
frequencies the structural damping terms cannot be considered to be small. The solutions of the Oð1Þ-problems still
cannot be truncated in these cases and still has to be written in an infinite series representation from the mathematical
point of view.

For future research it will be interesting to study more complicated cases for the transversal and longitudinal motions of
axially moving beams, including those cases for which the boundary conditions are such that energy inflow or outflow is
possible through these boundaries. Numerical results (based on spectral element methods) for these type of problems can
already be found in [16,17].
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